Тяговый электродвигатель (ТЭД) – электрический двигатель, предназначенный для приведения в движении транспортных средств (электровозов, электропоездов, тепловозов, трамваев, троллейбусов и т.д).         Электроподвижной состав (ЭПС) железных дорог являются важнейшей составной частью железнодорожного транспорта страны. Эффективность работы   ЭПС во многом определяет и эффективность всей системы железнодорожного транспорта. [1] Одним из показателей эффективности   ЭПС является его надежность. Важнейшим элементом   ЭПС являются его тяговые электродвигатели (ТЭД). Как следует из многочисленных исследований различных авторов, ТЭД является одним из элементов конструкции   ЭПС, ограничивающих эксплуатационных надежность последнего. Задача повышения надежности   ТЭД, во многом определяющий надежность   ЭПС, и в настоящее время является актуальной. [1]

Цель работы: рассмотреть применение закона Ампера в работе тягового двигателя электровоза

Для достижения поставленной цели выдвинуты следующие задачи:

  1. Изучить источники информации по данной теме
  2. Рассмотреть основные части и назначение тягового двигателя электровоза
  3. Изучить закон Ампера
  4. Выяснить, где применяется закон Ампера в работе тягового двигателя электровоза

1.Закон Ампера в работе тягового двигателя электровоза 

1.1 Основные части и назначение тягового двигателя электровоза.

Тяговые электродвигатели железнодорожных транспортных средств (в соответствии с рисунком 1) приводятся в эксплуатацию в довольно сложных погодных условиях, в пыльном и влажном воздухе. [3] Исходя из этого, разработчики конструкции тяговых электродвигателей обязательно располагают на усовершенствованную электрическую и механическую прочность узлов и деталей, теплостойкую и влагостойкую изоляцию токоведущих обмоток и частей, устойчивую коммутацию двигателей. Итак, давайте детально рассмотрим, из чего же состоит тяговой электродвигатель, и сделаем краткую характеристику каждого из составляющих. Если говорить в целом, можно сказать, что как и любые другие двигатели с постоянным током, тяговой электродвижок состоит из якоря, щеткодержателя и щетки, а также из остова с полюсами. Теперь обо всех деталях по порядку. Якорь тягового электродвигателя состоит из сердечника, обмотки, коллектора и вала. [3]  Вал якоря, как правило, изготавливают из специальной стали с повышенным качеством. Но, как показывает практика, валы тоже «стареют» и их приходится менять. Исходя из этого, листы сердечника собирают не на валу, а непосредственно на специальной втулке. В таком случае, данная конструкция способствует выпрессовыванию вала из втулки, при этом не разбирая сердечник, обмотку и коллектор. Как правило, одним из основных и достаточно важных и ответственных узлов в данном двигателе является коллектор. Он является частью, которая терпит наибольшие нагрузки в электрическом отношении. В основном условиями его надежной работы ограничиваются предельные мощности тяговых двигателей. Коллекторы современных тяговых двигателей имеют в диаметре свыше 800 мм, число пластин составляет 600. Щетки и щеткодержатели в тяговом электродвигателе являются одним целым. [3] Сквозь щетки, которые установлены на щеткодержателях, проходит электрический ток, который подводится прямиком к обмотке якоря тягового двигателя. Материалом, из которого изготавливаются щетки для тяговых электродвигателей, является графит, который получают при нагревании антрацита, сажи, кокса в электрической печи. За счет материала, из которого сделаны щетки, они получили название электро графитизированных. Во время изготовления таких деталей, конструкторы прослеживают за тем, чтобы они характеризировались высоким переходным сопротивлением и низким коэффициентом трения, а также обладали упругостью и износоустойчивостью. В свою очередь, конструкция щеткодержателя включает в себя корпус и кронштейн, соединённые между собой с помощью болта. Для того чтобы крепление и электрический контакт корпуса и кронштейна был более надежным и тесным, соприкасающиеся поверхности имеют рифлёную поверхность. [3] Очень важно, чтобы щеткодержатель находился в изоляции от остова электродвигателя. Поэтому кронштейны щеткодержателей крепятся к остову или подшипниковым щитам с использованием изоляторов. Теперь поговорим об остове. В составе тягового электродвигателя остов одновременно выполняет роль магнито провода, так как к нему крепятся главные и дополнительные полюса. Как правило, остов должен проделывать минимальное сопротивление прохождению магнитного потока. Исходя из этого, его изготавливают из стали, которая обладает хорошими магнитными свойствами.
Тяговый двигатель предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую, передаваемую с вала двигателя на колесную пару. [3]

1.2 Закон Ампера

Магнитное поле материально, т. е. существует независимо от наших знаний о нем. Порождается только движущимся электрическим зарядом: вокруг любого движущегося заряженного тела существует магнитное поле. Магнитное поле может быть создано и магнитом, (в соответствии с рисунком 2) но и там причиной появления поля является движение электронов. Магнитное поле может быть создано и переменным электрическим полем. [4]

Обнаружить магнитное поле можно по действию на движущийся электрический заряд (или проводник с током) с некоторой силой. Магнитное поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме. Источниками магнитного поля являются электрические движущиеся заряды (токи) и изменяющееся во времени электрическое поле.

Магнитное поле, в отличие от электрического, не оказывает действия на покоящийся заряд. [4] Сила возникает лишь тогда, когда заряд движется. Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. (в соответствии с рисунком 3) В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы. [4]

  • индукция магнитного поля, в котором находится проводник с током
  • сила тока в проводнике
  • бесконечно малый элемент длины проводника с током
  •  угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что линии магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника. (в соответствии с рисунком 4)

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. [4] Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль. Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции. [4]

 2. Применение закона Ампера в работе тягового электровоза 

Как правило, современный электровоз комплектуется электрическим двигателем, который может быть как постоянного, так и переменного тока.         Тяговой электродвигатель работает по определенному принципу, если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. [2] В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент. Это делается при помощи двух полуколец, (в соответствии с рисунком 5) к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.      [2]   Итак, как правило, в магнитное поле (в данном случае оно создается благодаря постоянному магниту) помещают якорь с обмотками — обмотку из медной изолированной проволоки. (в соответствии с рисунком 6) В свою очередь, от какого-либо источника тока поступает постоянный ток, который проходит по обмотке.

После этого, вокруг проводника, который проводит через себя электрический ток, возникает магнитное поле. Помимо магнитного поля, которое образуется благодаря току, протекающему через проводник, существует еще и магнитное поле постоянного магнита. [2] Они воздействуют между собой и в результате образуется сила, которая стремится повернуть проводник в определенную сторону. Куда будет направлено действие этой силы (а следовательно, и направление вращения) можно определить воспользовавшись правилом левой руки. Следуя правилу, если расположить левую руку так, чтобы в ладонь входили магнитные силовые линии (из северного полюса магнита в южный), а пальцы разместить в сторону направления движения тока, проходящего через проводник, то отставленный в сторону большой палец покажет направление движения проводника. В итоге, рамка поворачивается против часовой стрелки вплоть до того времени, пока не займет определенную позицию. В последнем случае, ток по ее цепи проходить не будет, но все же, даже тогда она будет двигаться по инерции до тех пор пока не займет соответствующего положения. [2] В данном положении, по рамке опять пройдет ток в прежнем направлении, что говорит о том, что он будет производить магнитное поле, которое во время взаимодействия с полем магнита, будет стремиться к поворачиванию рамки против часовой стрелки. И тут приходит на помощь коллектор. Как правило, коллектор, который предназначается для поддержания направления тока в обмотке электродвигателя при ее оборачивании неизменимым, состоит из двух медных полуцилиндров, которые располагаются в изоляции друг от друга и дотрагиваются до щеток. [2] Если бы его не было, то рамка, после того как она займет определенное положение, должна будет сделать остановку, так как, согласно правилу левой руки, сила взаимодействия магнитных полей рамки и магнита будет стремиться возвратить рамку в определенную позицию. [2]

Заключение 

Цель данной работы — ознакомление с перспективами развития тягового двигателя и закон Ампера. В процессе работы я изучил  источники информации по данной теме, ознакомился применением закона Ампера в работе тягового электродвигателя. Железнодорожный транспорт очень распространен во всех странах мира. В работе исследован принцип действия электрического двигателя. Изучена простейшая действующая модель, наглядно иллюстрирующая принцип действия электродвигателя.